Package |
PCDimension |
Version |
1.1.13 |
Date |
2022-06-30 |
Title |
Finding the Number of Significant Principal Components |
Author |
Kevin R. Coombes, Min Wang |
Maintainer |
Kevin R. Coombes <krc@silicovore.com> |
Description |
Implements methods to automate the Auer-Gervini graphical Bayesian approach for determining the number of significant principal components. Automation uses clustering, change points, or simple statistical models to distinguish "long" from "short" steps in a graph showing the posterior number of components as a function of a prior parameter. See <doi:10.1101/237883>. |
Depends |
R (>= 3.1), ClassDiscovery |
Imports |
methods, stats, graphics, oompaBase, kernlab, changepoint, cpm |
Suggests |
MASS, nFactors |
License |
Apache License (== 2.0) |
biocViews |
Clustering |
URL |
http://oompa.r-forge.r-project.org/ |
NeedsCompilation |
no |
Packaged |
2022-07-20 17:55:26 UTC; KRC |
Built |
R 4.2.1; ; 2022-07-20 17:55:46 UTC; windows |
User Manual | PCDimension-manual.pdf |
R CHECK | 00check.log |
Vignettes |
PCDimension.pdf |