OOMPA logo

Main
Package List

OOMPA

PCDimension

Package PCDimension
Version 1.1.13
Date 2022-06-30
Title Finding the Number of Significant Principal Components
Author Kevin R. Coombes, Min Wang
Maintainer Kevin R. Coombes <krc@silicovore.com>
Description Implements methods to automate the Auer-Gervini graphical Bayesian approach for determining the number of significant principal components. Automation uses clustering, change points, or simple statistical models to distinguish "long" from "short" steps in a graph showing the posterior number of components as a function of a prior parameter. See <doi:10.1101/237883>.
Depends R (>= 3.1), ClassDiscovery
Imports methods, stats, graphics, oompaBase, kernlab, changepoint, cpm
Suggests MASS, nFactors
License Apache License (== 2.0)
biocViews Clustering
URL http://oompa.r-forge.r-project.org/
NeedsCompilation no
Packaged 2022-07-20 17:55:26 UTC; KRC
Built R 4.2.1; ; 2022-07-20 17:55:46 UTC; windows
User ManualPCDimension-manual.pdf
R CHECK00check.log
Vignettes PCDimension.pdf